
Financial Regulation in a Quantitative
Model of the Modern Banking System:
Online Appendix

I Computational Solution Method

The equilibrium of dynamic stochastic general equilibrium models is usually character-
ized recursively. If a stationary Markov equilibrium exists, there is a minimal set of state
variables that summarizes the economy at any given point in time. Equilibrium can then
be characterized using two types of functions: transition functions map today’s state into
probability distributions of tomorrow’s state, and policy functions determine agents’ de-
cisions and prices given the current state. Brumm et al. (2018) analyze theoretical ex-
istence properties in this class of models and discuss the literature. Perturbation-based
solution methods find local approximations to these functions around the “determinis-
tic steady-state”. For applications in finance, there are often several problems with local
solution methods. First, portfolio restrictions such as leverage constraints may be oc-
casionally binding in the true stochastic equilibrium. Generally, a local approximation
around the steady state (with a binding or slack constraint) will therefore inaccurately
capture nonlinear dynamics when constraints go from slack to binding. Further, local
methods have difficulties in dealing with highly nonlinear functions within the model
such as probability distributions or option-like payoffs, as is the case for the quantitative
model in this paper. Finally, in models with rarely occurring bad shocks (such as the
runs in our model), the steady state used by local methods may not properly capture the
ergodic distribution of the true dynamic equilibrium.

Global projection methods (Judd (1998)) avoid these problems by not relying on the
deterministic steady state. Rather, they directly approximate the transition and policy
functions in the relevant area of the state space.

I.a Equilibrium Conditions

The solution of the model can be written as a system of 17 nonlinear functional equations
in equally many unknown functions of the state variables. The model’s state variables are
St = (Yt, Zt, πR

t , KC
t , KS

t , AC
t , AS

t ).
The functions are aggregate consumption C(St), prices of C-bank and S-bank equity
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(pC(St), pS(St)), prices of C-bank and S-bank deposits (qC(St), qS(St)), C-bank and S-
bank deposit issuance per unit of capital (bC(St+1), bS(St+1)), the Lagrange multiplier
on C-bank leverage λC(St), C-bank and S-bank capital purchases (KC(St+1), KS(St+1)),
the capital price p(St), C-bank and S-bank investment (IC(St), IS(St)), labor demand of
C-bank, S-bank and households (NC(St), NS(St), NH(St)), and the wage w(St). For the
equations, we will use time subscripts und suppress the dependence on state variables.
All variables can be expressed as functions of current (St) or one-period ahead (St+1) state
variables.

The equations are

2



pC
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(
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t+1

)]
(E1)

pS
t = Et

[
Mt,t+1FS

ρ,t+1

(
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t+1 + pS
t+1

)]
(E2)

qC
t = Et

[
Mt,t+1

(
1 + MRSC

t+1

)]
(E3)

qS
t = Et

[
Mt,t+1

(
(1− πR

t+1)
(

1− FS
ρ,t+1

(
1− (πB + (1− πB)rS

t+1)
))

+ πR
t+1 + MRSS

t+1

)]
(E4)

Ct + IC
t + IS

t + Φ(IC
t , KC

t ) + Φ(IS
t , (1− `S

t )K
S
t ) = Yt + YC

t + YS
t + YH

t
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t ρC,−

t (ΠC
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t
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t (E5)

qS
t + bS

t+1 q′S(b
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t
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)
= 0 (E8)

pt − qS
t bS

t+1 + φK

(
kS

t+1 − 1
)
= Et

[
Mt,t+1ΠS

t+1 ΩS
(

LS
t+1

)]
, (E9)

pt − (qC
t − κ)bC

t+1 + φK

(
kC

t+1 − 1
)
= Et

[
Mt,t+1ΠC

t+1 ΩC
(

LC
t+1

)]
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t =

(
pt − 1
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)
KC

t (E12)
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+ δK

)
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t )K
S
t (E13)

wt = ηZt(nC
t )

η−1 (E14)
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t =

KC
t

KC
t + (1− `S

t )K
S
t + `S

t KS
t (Zt/Zt)1/(1−η)

(E15)

NS
t =

(1− `S
t )K

S
t

KC
t

NC
t (E16)

NH
t = 1− NC

t − NS
t (E17)

(E1) – (E4) are the household Euler equations for bank equity and debt from equations
(44) applied to j = C, S, (47), and (48). (E5) is the resource constraint from (42). (E6) is the
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S-bank condition for leverage from (49). (E7) is the C-bank condition for leverage (52),
with (E8) being the complementary slackness condition for the leverage constraint (10).
(E9) and (E10) are the S-bank and C-bank conditions for capital growth from (40), applied
to either bank type. (E11) is the market clearing condition for capital (41), and (E12) –
(E13) are the first-order conditions for investment by banks from (34), applied to j = C, S.
(E14) – (E16) are the first-order conditions for labor demand by banks and households,
from (33) applied to j = C, S, H, and (E17) is the market clearing condition for labor.

I.b Solution Procedure

The projection-based solution approach used in this paper has three main steps.

Step 1. Define approximating basis for the policy and transition functions. To approxi-
mate these unknown functions, we discretize the state space and use multivariate
linear interpolation. Our general solution framework provides an object-oriented
MATLAB library that allows approximation of arbitrary multivariate functions us-
ing linear interpolation, splines, or polynomials. For the model in this paper, splines
or polynomials of various orders achieved inferior results due to their lack of global
shape preservation.

Step 2. Iteratively solve for the unknown functions. Given an initial guess for policy and
transition functions, at each point in the discretized state space compute the current-
period optimal policies. Using the solutions, compute the next iterate of the transi-
tion functions. Repeat until convergence. The system of nonlinear equations at each
point in the state space is solved using a standard nonlinear equation solver. Kuhn-
Tucker conditions can be rewritten as equality constraints for this purpose. This
step is completely parallelized across points in the state space within each iterate.

Step 3. Simulate the model for many periods using approximated functions. Verify that
the simulated time path stays within the bounds of the state space for which policy
and transition functions were computed. Calculate relative Euler equation errors to
assess the computational accuracy of the solution. If the simulated time path leaves
the state space boundaries or errors are too large, the solution procedure may have
to be repeated with optimized grid bounds or positioning of grid points.

We will now provide a more detailed description for each step.

Step 1 The state space consists of
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- two exogenous state variables [Yt, πR
t ], and

- four endogenous state variables [Kt, KS
t , BS

t , BC
t ].

The banking sector specific shock Zt does not contain any persistent shocks in addition
to Yt and is therefore not an additional state variable. We first discretize Yt into a NY-
state Markov chain using the Rouwenhorst (1995) method, where NY is an odd number.
The procedure chooses the productivity grid points {Yj}NY

j=1 and the NY × NY Markov
transition matrix ΠY between them to match the volatility and persistence of GDP growth
of the bank independent sector. The run shock πR

t can take on two realizations {0, π̄R}
as described in the calibration section. The 2 x 2 Markov transition matrix between these
states is given by ΠπR . We assume that run shocks only occur in states with negative
GDP growth. Denote the set of the Nx = NY + (NY − 1)/2 values the exogenous state
variables can take on as Sx, and the associated Markov transition matrix Πx.

Our solution algorithm requires approximation of continuous functions of the endoge-
nous state variables. Define the “true” endogenous state space of the model as follows: if
each endogenous state variable St ∈ {Kt, KS

t , BS
t , BC

t } can take on values in a continuous
and convex subset of the reals, characterized by constant state boundaries, [S̄l, S̄u], then
the endogenous state space Sn = [K̄l, K̄u]× [K̄S

l , K̄S
u]× [B̄S

l , B̄S
u ]× [B̄C

l , B̄C
u ]. The total state

space is the set S = Sx × Sn.
To approximate any function f : S → R, we form an univariate grid of (not neces-

sarily equidistant) strictly increasing points for each endogenous state variables, i.e., we
choose {Kj}NK

j=1, {KS
k }

NKS
k=1 , {BS

m}
NBS
m=1, and {BC

n }
NBC
n=1. These grid points are chosen to ensure

that each grid covers the ergodic distribution of the economy in its dimension, and to min-
imize computational errors, with more details on the choice provided below. Denote the
set of all endogenous-state grid points as Ŝn = {Kj}NK

j=1×{K
S
k }

NKS
k=1 ×{B

S
m}

NBS
m=1×{BC

n }
NBC
n=1,

and the total discretized state space as Ŝ = Sx × Ŝn. This discretized state space has
NS = Nx · NK · NKS · NBS · NBC total points, where each point is a 5 x 1 vector as there are
5 distinct state variables (counting the exogenous state as one). We can now approximate
the smooth function f if we know its values { f j}NS

j=1 at each point ŝ ∈ Ŝ, i.e. f j = f (ŝj) by
multivariate linear interpolation.

Our solution method requires approximation of of three sets of functions defined on
the domain of the state variables. The first set of unknown functions CP : S → P ⊆
RNC

, with NC being the number of policy variables, determines the values of endogenous
objects specified in the equilibrium definition at every point in the state space. These
are the prices, agents’ choice variables, and the Lagrange multipliers on the portfolio
constraints. Specifically, the 8 policy functions are debt prices qS(S), qC(S), capital price
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p(S), debt issued by banks in the current period BS(S), BC(S), the capital purchased by
S-banks KS(S), labor demand of S-banks nS(S), and the Lagrange multiplier for the C-
bank leverage constraint λC(S). There is an equal number of these unknown functions
and nonlinear functional equations, to be listed under step 2 below.

The second set of functions CT : S × Sx → Sn determine the next-period endoge-
nous state variable realizations as a function of the state in the current period and the
next-period realization of exogenous shocks. There is one transition function for each en-
dogenous state variable, corresponding to the transition law for each state variable, also
to be listed below in step 2.

The third set are forecasting functions CF : S → F ⊆ RNF
, where NF is the number

of forecasting variables. They map the state into the set of variables sufficient to compute
expectations terms in the nonlinear functional equations that characterize equilibrium.
They partially coincide with the policy functions. In particular, the forecasting functions
for our model are the capital price p(S), S-bank labor input nS(S), capital growth of both
types of banks kS(S), kC(S), and the value function of households VH(S) (to compute
welfare).

Step 2 Given an initial guess C0 = {C0
P, C0

T, C0
F}, the algorithm to compute the equilib-

rium takes the following steps.

A. Initialize the algorithm by setting the current iterate Cm = {Cm
P , Cm

T , Cm
F } = {C0

P, C0
T, C0

F}.

B. Compute forecasting values. For each point in the discretized state space, sj ∈ Ŝ ,
j = 1, . . . , NS, perform the steps:

i. Evaluate the transition functions at sj combined with each possible realization
of the exogenous shocks xi ∈ Sx to get s

′
j(xi) = Cm

T (sj, xi) for i = 1, . . . , Nx,
which are the values of the endogenous state variables given the current state
sj and for each possible future realization of the exogenous state.

ii. Evaluate the forecasting functions at these future state variable realizations to
get f 0

i,j = Cm
F

(
s
′
j(xi), xi

)
.

The end result is a Nx × NS matrix F m, with each entry being a vector

f m
i,j = [pi,j, nS

i,j, kS
i,j, kC

i,j, VH
i,j ] (F)

of the next-period realization of the forecasting functions for current state sj and
future exogenous state xi.

6



C. Solve system of nonlinear equations. At each point in the discretized state space,
sj ∈ Ŝ , j = 1, . . . , NS, solve the system of nonlinear equations that characterize
equilibrium in the equally many “policy” variables, given the forecasting matrix
F m from step B. This amounts to solving a system of 12 equations in 12 unknowns

P̂j = [q̂S
j , q̂C

j , p̂j, B̂S
j , B̂C

j , K̂S
j , n̂S

j , λ̂C
j ] (P)

at each sj. The equations are

q̂C
j = Es′i,j|sj

[
M̂i,j

(
1 + MRSC

i,j

)]
(C1)

q̂S
j = Es′i,j|sj

[
M̂i,j

(
1− FS

i,j

(
1− (πB + (1− πB)rS

i,j)
)
+ MRSS

i,j

)]
(C2)

q̂S
j + b̂S

j q′S(b̂
S
j ) = Es′i,j|sj

[
M̂i,j(1− FS

i,j)

(
1− πR

i +
`i,j

LS
i,j

(
ρS,+

i,j +
vS

i,j

ΠS
i,j

))]
(C3)

p̂j − q̂S
j b̂S

j + φK

(
k̂S

j − 1
)
= Es′i,j|sj

[
M̂i,jΠS

i,j ΩS
(

LS
i,j

)]
(C4)

q̂C
j − κ = λ̂C

j + Es′i,j|sj

[
M̂i,j(1− FC

i,j)
]

(C5)

p̂j − (q̂C
j − κ)b̂C

j + φK

(
k̂C

j − 1
)
= Es′i,j|sj

[
M̂i,jΠC

i,j ΩC
(

LC
i,j

)]
(C6)

λ̂C
j

(
p̂j − (1− θ)b̂C

j

)
= 0 (C7)

1 = N̂H
j + N̂C

j + N̂S
j . (C8)

(C1) and (C2) are the household Euler equations for purchases of deposits. (C3) and
(C4) are the intertemporal optimality conditions for S-banks, and (C5) and (C6) are
those for C-banks. (C7) is the leverage constraint for C-banks. Finally, (C8) is the
market clearing condition labor.

Expectations are computed as weighted sums, with the weights being the proba-
bilities of transitioning to exogenous state xi, conditional on state sj. Hats (·̂) in
(C1) – E(C8) indicate variables that are direct functions of the vector of unknowns
(P). These are effectively the choice variables for the nonlinear equation solver that
finds the solution to the system (C1) – (C8) at each point sj. All variables in the
expectation terms with subscript i,j are direct functions of the forecasting variables
(F).

The latter values are fixed numbers when the system is solved, as they we pre-
computed in step B. For example, the stochastic discount factor M̂i,j depends on
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both the solution and the forecasting vector, i.e.

M̂i,j = β

(
Ci,j

Ĉj

)−γ

,

since it depends on future and current consumption. To compute the expectation of
the right-hand side of equation (C1) at point sj, we first look up the corresponding
column j in the matrix containing the forecasting values that we computed in step
B, F m. This column contains the Nx vectors, one for each possible realization of
the exogenous state, of the forecasting values defined in (F). From these vectors, we
need consumption Ci,j. Further, we need current consumption Ĉj, which is a pol-
icy variable chosen by the nonlinear equation solver. MRSC

i,j is a function of future
consumption Ci,j, and the future state variables BS

i,j and BC
i,j (since market clearing

implies Aj
t = Bj

t for j = S, C). Denoting the probability of moving from current
exogenous state xj to state xi as πi,j, we compute the expectation of the RHS of (C1)

Es′i,j|sj

[
M̂i,j

(
1 + MRSC

i,j

)]
= ∑

xi | xj

πi,jM̂i,j

(
1 + MRSC

i,j

)
.

The mapping of solution and forecasting vectors (P) and (F) into the other expres-
sions in equations (C1) – (C8) follows the same principles and is based on the equa-
tions in model appendix A. In particular, the system (C1) – (C8) implicitly uses the
budget constraints of all agents, and the market clearing conditions for capital and
debt of both banks.

Note that we could exploit the linearity of the market clearing condition in (C8)
to eliminate one more policy variable, n̂S, from the system analytically. However,
in our experience the algorithm is more robust when we explicitly include labor
demand of all agents as policy variables, and ensure that these variables stay strictly
positive (as required with CD production functions) when solving the system. To
solve the system in practice, we use a nonlinear equation solver that relies on a
variant of Newton’s method, using policy functions Cm

P as initial guess. More on
these issues in subsection I.3 below.

The final output of this step is a NS × 12 matrix Pm+1, where each row is the solu-
tion vector P̂j that solves the system (C1) – (C8) at point sj.

D. Update forecasting, transition and policy functions. Given the policy matrix Pm+1

from step B, update the policy function directly to get Cm+1
P . All forecasting func-

8



tions with the exception of the value functions are also equivalent to policy func-
tions. The household value function is updated based on the recursive definition

V̂H
j = U(Ĉj, Hi,j) + βEs′i,j|sj

VH
i,j (V)

using the same notation as defined above under step C. Note that the value function
combines current solutions from Pm+1 (step C) for consumption with forecasting
values from F m (step B). Using these updated value functions, we get Ĉm+1

F .

Finally, update transition functions for the endogenous state variables using the fol-
lowing laws of motion, for current state sj and future exogenous state xi as defined
above:

Km+1
i,j = ÎC

j + ÎS
j + (1− δK)

(
1− ξCFC

i,jρ
C,−
i,j

)
KC

i,j

+ (1− δK)
(

1− ξSFS
i,jρ

S,−
i,j

)
(1− `S

i,j)K
S
i,j + (1− δK)`

S
i,jK

S
i,j (T1)

(KS
i,j)

m+1 = k̂S
j KS

i,j (T2)

(BC
i,j)

m+1 = B̂C
j (T3)

(BS
i,j)

m+1 = B̂S
j . (T4)

(T1) is simply the law of motion for aggregate capital, and (T2) is the definition of
capital growth kS

t . (T3) and (T4) follow directly from the direct mapping of policy
into state variable for bank debt. Updating according to (T1) – (T4) gives the next
set of functions Ĉm+1

T .

E. Check convergence. Compute distance measures ∆F = ||Cm+1
F − Cm

F || and ∆T =

||Cm+1
T − CTFm||. If ∆F < TolF and ∆T < TolT, stop and use Cm+1 as approximate

solution. Otherwise reset policy functions to the next iterate i.e. Pm → Pm+1 and
reset forecasting and transition functions to a convex combination of their previ-
ous and updated values i.e. Cm → Cm+1 = D × Cm + (1− D) × Ĉm+1, where D
is a dampening parameter set to a value between 0 and 1 to reduce oscillation in
function values in successive iterations. Next, go to step B.

Step 3 Using the numerical solution C∗ = Cm+1 from step 2, we simulate the economy
for T̄ = Tini + T period. Since the exogenous shocks follow a discrete-time Markov chain
with transition matrix Πx, we can simulate the chain given any initial state x0 using T̄− 1
uniform random numbers based on standard techniques (we fix the seed of the random
number generator to preserve comparability across experiments). Using the simulated
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path {xt}T̄
t=1, we can simulate the associated path of the endogenous state variables given

initial state s0 = [x0, K0, KS
0 , BS

0 , BC
0 ] by evaluating the transition functions

[Kt+1, KS
t+1, BC

t+1, Bg
t+1H0] = C∗T(st, xt+1),

to obtain a complete simulated path of model state variables {st}T̄
t=1. To remove any effect

of the initial conditions, we discard the first Tini points. We then also evaluate the policy
and forecasting functions along the simulated sample path to obtain a complete sample
path {st, Pt, ft}T̄

t=1.
To assess the quality and accuracy of the solution, we perform two types of checks.

First, we verify that all state variable realizations along the simulated path are within the
bounds of the state variable grids defined in step 1. If the simulation exceeds the grid
boundaries, we expand the grid bounds in the violated dimensions, and restart the pro-
cedure at step 1. Secondly, we compute relative errors for all equations of the system (C1)
– (C8) and the transition functions (T1) – (T4) along the simulated path. For equations in-
volving expectations (such as (C1)), this requires evaluating the transition and forecasting
function as in step 2B at the current state st. For each equation, we divide both sides by a
sensibly chosen endogenous quantity to yield “relative” errors; e.g., for (C1) we compute

1 =
1

q̂C
j

Es′i,j|sj

[
M̂i,j

(
1 + MRSC

i,j

)]
,

using the same notation as in step 2B. These errors are small by construction when calcu-
lated at the points of the discretized state grid Ŝ , since the algorithm under step 2 solved
the system exactly at those points. However, the simulated path will likely visit many
points that are between grid points, at which the functions C∗ are approximated by in-
terpolation. Therefore, the relative errors indicate the quality of the approximation in the
relevant area of the state space. We report average, median, and tail errors for all equa-
tions. If errors are too large during simulation, we investigate in which part of the state
space these high errors occur. We then add additional points to the state variable grids in
those areas and repeat the procedure.

I.c Implementation

Solving the system of equations. We solve system of nonlinear equations at each point
in the state space using a standard nonlinear equation solver (MATLAB’s fsolve). This
nonlinear equation solver uses a variant of Newton’s method to find a “zero” of the sys-
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tem. We employ several simple modifications of the system (C1) – (C8) to avoid common
pitfalls at this step of the solution procedure. Nonlinear equation solver are notoriously
bad at dealing with complementary slackness conditions associated with a constraint.
Judd, Kubler, and Schmedders (2002) discuss the reasons for this and also show how
Kuhn-Tucker conditions can be rewritten as additive equations for this purpose. Con-
sider the C-bank’s Euler Equation for risk-free debt and the Kuhn-Tucker condition for its
leverage constraint:

q̂C
j − κ = λ̂C

j + Es′i,j|sj

[
M̂i,j(1− FC

i,j)
]

0 = λ̂C
j

(
p̂j − (1− θ)b̂C

j

)
Now define an auxiliary variable hj ∈ R and two functions of this variable, such that
λ̂C,+

j = max{0, hj}3 and λ̂C,−
j = max{0,−hj}3. Clearly, if hj < 0, then λ̂I,+

j = 0 and

λ̂C,−
j > 0, and vice versa for hj > 0. Using these definitions, the two equations above can

be transformed to:

q̂C
j − κ = λ̂C,+

j + Es′i,j|sj

[
M̂i,j(1− FC

i,j)
]

0 = p̂j − (1− θ)b̂C
j − λ̂C,−

j .

The solution variable for the nonlinear equation solver corresponding to the multiplier is
hj. The solver can choose positive hj to make the constraint binding (λ̂C,−

j = 0), in which

case λ̂C,+
j takes on the value of the Lagrange multiplier. Or the solver can choose negative

hj to make the constraint non-binding (λ̂C,+
j = 0), in which case λ̂C,−

j can take on any
value that makes (K2) hold.

Similarly, certain solution variables are restricted to positive values due to the eco-
nomic structure of the problem. For example, given the Cobb-Douglas production func-
tion, optimal S-bank capital for next period K̂S

j is always strictly positive. To avoid that
the solver tries out negative capital values (and thus output becomes ill-defined), we use
log(K̂S

j ) as solution variable for the solver. This means the solver can make capital arbi-
trarily small, but not negative.

Grid configuration. We choose to include the relative capital share of S-banks K̃S
t =

KS
t /Kt as state variable instead of borrower debt KS

t such that the total set of endogenous
state variables is [Kt, K̃S

t , BC
t , BS

t ]. The reason is that the capital share is more stable in the
dynamics of the model than the level, since total capital and S-bank capital are strongly
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correlated. For similar reasons, we choose to include S-bank and C-bank book leverage
bS

t = BS
t /KS

t and bC
t = BC

t /KC
t instead of the levels of debt. For the benchmark case, the

grid points in each state dimension are as follows

• Y: We discretize Y and Z jointly into a 9-state Markov chain (with three possi-
ble realizations for each) using the Rouwenhorst (1995) method. The procedure
chooses the productivity grid points {Y}3

j=1 and {Z}3
j=1 and the 9× 9 Markov tran-

sition matrix ΠY,Z between them to match the volatility and persistence of GDP
growth. This yields the possible realizations for Y: [0.9869, 1.0000, 1.0132], and for
Z: [0.9698, 1.0000, 1.0312].

• πR: [0.0, 0.33] (see calibration)

• K: [2.92, 3.04, 3.15, 3.26, 3.39, 3.50]

• K̃S: [0.26, 0.28, 0.30, 0.32, 0.34, 0.36, 0.38]

• bS: [0.10, 0.218, 0.334, 0.451, 0.568, 0.686, 0.803, 0.92]

• bC: [0.87, 0.882, 0.894, 0.906, 0.918, 0.93]

The total state space grid has 24,192 points. The grid boundaries and the placement
of points have to be readjusted for each experiment, since the ergodic distribution of the
state variables depends on parameters. Finding the right values for the boundaries is a
matter of experimentation.

Generating an initial guess and iteration scheme. To find a good initial guess for the
policy, forecasting, and transition functions, we solve the deterministic “steady-state” of
the model under the assumption that the bank leverage constraint is binding and no runs
are occurring. We then initialize all functions to their steady-state values, for all points
in the state space. Note that the only role of the steady-state calculation is to generate
an initial guess that enables the nonlinear equation solver to find solutions at (almost) all
points during the first iteration of the solution algorithm. In our experience, this steady
state delivers a good enough initial guess.

In case the solver cannot find solutions for some points during the initial iterations, we
revisit such points at the end of each iteration. We try to solve the system at these “failed”
points using as initial guess the solution of the closest neighboring point at which the
solver was successful. This method works well to speed up convergence and eventually
finds solutions at all points.
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To determine convergence, we check absolute errors in the value function of house-
holds, (V). Out of all functions we approximate during the solution procedure, it exhibits
the slowest convergence. We stop the solution algorithm when the maximum absolute
difference between two iterations, and for all points in the state space, falls below 1e-3
and the mean distance falls below 1e-4. For appropriately chosen grid boundaries, the
algorithm converges within 120 iterations.

We implement the algorithm in MATLAB and run the code on a high-performance
computing (HPC) cluster. As mentioned above, the nonlinear system of equations can be
solved in parallel at each point. We parallelize across 28 CPU cores of a single HPC node.
The total running time for the benchmark calibration is about 2 hours and 40 minutes.

Simulation. To obtain the quantitative results, we simulate the model for 5,000 periods
after a “burn-in” phase of 500 periods. The starting point of the simulation is the ergodic
mean of the state variables. As described in detail above, we verify that the simulated
time path stays within the bounds of the state space for which the policy functions were
computed. We fix the seed of the random number generator so that we use the same
sequence of exogenous shock realizations for each parameter combination.

To produce impulse response function (IRF) graphs in Figure 1, we simulate 10,000
different paths of 25 periods each. In the initial period, we set the endogenous state
variables to several different values that reflect the ergodic distribution of the states. We
use a clustering algorithm to represent the ergodic distribution non-parametrically. We
fix the initial exogenous shock realization to mean productivity (Y = Z = 1) and no run
(πR = 0). The “impulse” in the second period is either only a bad productivity shock,
or both low productivity and a run shock (πR = 0.3). For the remaining 23 periods, the
simulation evolves according to the stochastic law of motion of the shocks. In the IRF
graphs, we plot the median path across the 10,000 paths given the initial condition. The
simulation dynamics in Figure 2 are constructed similarly, with the difference that the
economy also experiencing unanticipated changes in model parameters.

Evaluating the solution. Our main measure to assess the accuracy of the solution are
relative equation errors calculated as described in step 3 of the solution procedure. Ta-
ble A reports the median error, the 95th percentile of the error distribution, the 99th, and
100th percentiles during the 5,000 period simulation of the model. Median errors are very
small for all equations, with even maximum errors only causing small approximation
mistakes. Errors are comparably small for all experiments we report.
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Table A: Computational Errors

Equation Percentile
50th 75th 95th 99th Max

C1 5.63519E-05 6.63392E-05 7.44099E-05 8.19743E-05 8.75681E-05
C2 5.75018E-05 6.76531E-05 7.58158E-05 8.3402E-05 8.91697E-05
C3 6.08842E-05 7.15472E-05 7.98797E-05 8.75013E-05 9.34417E-05
C4 1.31404E-05 1.69366E-05 2.46315E-05 3.18816E-05 7.70292E-05
C5 3.86174E-05 4.73236E-05 5.48711E-05 5.93791E-05 6.23922E-05
C6 1.27067E-05 1.61208E-05 2.29494E-05 2.9007E-05 7.50274E-05
C7 0.00022121 0.000285663 0.000344085 0.000411546 0.000454729
C8 0.000126335 0.000157528 0.000174314 0.000175913 0.000211747

The table reports median, 75th percentile, 95th percentile, 99th percentile, and maximum abso-
lute value errors, evaluated at state space points from a 5,000 period simulation of the bench-
mark model. Each row contains errors for the respective equation of the nonlinear system (C1)
– (C8) listed in step 2 of the solution procedure.

II Simple Model

II.a Equilibrium Definition

Equilibrium definition. The equilibrium is a set of quantities {C0, C1, KS, KC, LS, LC, SS, SC, AC, AS}
and prices {p, qS, qC, pS, pC}, such that households maximize (13) subject to constraints
(17) and (18), S-banks maximize (9) and (8), C-banks maximize (9) and (6) subject to (7),
and the markets for capital 1 = KS + KC, equity shares (sum to 1) and deposits of both
bank types, Aj = Bj, clear.

By Walras law, consumption at time 0 is1

C0 = 0, (1)

and consumption at time 1 is

C1 = KC (E(ρC)− F(LC)E(ρC |ρC < LC)) + KS (E(ρS)− F(LS)E(ρS |ρS < LS)) . (2)

The resource constraint for period-1 consumption (2) clarifies the fundamental welfare
trade-off of the model. If banks did not issue any deposits, then LC = LS = 0, no bank
would default, and household consumption of the numeraire good would be maximized
at the full payoff of capital, E(ρj). However, in that case banks would produce no liquidity

1The funds households spend on their portfolio of bank securities, qC AC + pCSC + qS AS + pSSS, are
equal to the market value of the capital they sell to banks in equilibrium, p.
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services from which households also derive utility. To produce liquidity services, banks
need to issue deposits and take on leverage, which causes a fraction Fj(Lj) of them to
default. In the process, some payoffs of the numeraire good are destroyed.

II.b Preliminary Definitions

To unify notation in all following proofs, we first define the ratio of S-Bank to C-Bank
deposits

RS =
AS

AC
.

We compute the partial derivatives of the liquidity utility function in equation (19)

Hj(AS, AC) =
∂H(AS, AC)

∂Aj
= (αAε

S + (1− α)Aε
C)
−γ/ε H̃j(RS), (3)

for j = S, C, and where H̃j denote the partial derivatives if γ = 0:

H̃S(RS) =
∂H(AS, AC)

∂AS

∣∣∣∣
γ=0

= α

(
α + (1− α)

(
1

RS

)ε) 1−ε
ε

(4)

H̃C(RS) =
∂H(AS, AC)

∂AC

∣∣∣∣
γ=0

= (1− α) (αRε
S + (1− α))

1−ε
ε (5)

The derivatives conditional on γ = 0 only depend on the ratio RS, whereas the full par-
tials also depend on the levels of C-bank and S-bank deposits.

II.c C-bank and S-bank problem: size and leverage choice

For C-banks, the leverage problem is

vC = max
LC∈[0,1]

qCLC − p + β (1− FC(LC))
(
ρ+C − LC

)
(6)

subject to
LC ≤ (1− θ)E(ρC), (7)

and for S-banks it is

vS = max
LS∈[0,1]

qS(LS)LS − p + β (1− FS(LS))
(
ρ+S − LS

)
. (8)

15



The capital purchase decision for each bank is then given by

max
Kj≥0

Kjvj. (9)

Each individual S-bank recognizes that the price of its debt is a function of its leverage
according to households’ valuation in (23). However, S-banks are price takers and do not
internalize the effect of their leverage choice on the aggregate marginal benefit of S-bank
liquidity ψHS(AS, AC). The following proposition characterizes S-banks’ optimizing be-
havior, denoting by fS the density of distribution FS.

Proposition 1. 1. S-bank marginal defaults are equal to the marginal benefit of S-bank liquid-
ity:

LS fS(LS) = ψHS(AS, AC). (10)

2. S-banks’ demand for capital implies the following restriction on the capital price:

p = β
(
(1− FS(LS))ρ

+
S + ψLSHS(AS, AC)

)
.

Proof. To obtain the S-bank FOC for leverage, we differentiate the S-bank objective in (8)
to get

qS + q′S(LS)LS = β(1− FS(LS)).

Differentiating the HH FOC (23) with respect to LS, and under the restriction that indi-
vidual S-banks do not internalize their effect on aggregate S-bank liquidity AS, gives

q′S(LS) = −β fS(LS).

Combining the two yields

qS = β(1− FS(LS) + fS(LS)LS). (11)

Substituting this result back into the HH FOC (23) results in equation (10) for part 1.
For part 2., we first note that a positive amount of S-bank capital KS > 0 in equilibrium
requires that the expected profit per unit is zero, vS = 0, which when combined with
equation (8) gives

p = qSLS + β(1− F(LS))(ρ
+
S − LS).

Substituting for qS from (11) and (10), and simplifying gives the result.
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Proposition 1 states that S-banks optimally choose leverage such that the marginal
benefit of S-bank liquidity to households, on the RHS of (10), is equal to the marginal loss
due to defaulting S-banks (LHS).

Further, because of constant returns to scale and competitive markets, S-banks must
have zero expected value in equilibrium. This restriction leads to equation (25), which
states that S-bank demand for capital is perfectly elastic at a price p.

Turning to C-banks, the following proposition characterizes their optimal choices.

Proposition 2. If there is a positive marginal benefit of C-bank liquidity, ψHC(AS, AC) > 0, the
C-bank leverage constraint is always binding, implying LC = E(ρC)(1− θ), and C-banks’ capital
demand requires

p = β
(
(1− FC(LC))ρ

+
C + ψLCHC(AS, AC) + FC(LC)LC

)
.

Proof. Differentiating the C-bank objective in (6) with respect to LC gives

qC = µC + β(1− FC(LC)), (12)

where µC is the Lagrange multiplier on the leverage constraint. Combining equations (22)
and (12) yields

µC = β(ψHC + FC(LC)) > 0. (13)

Under the assumption that ψHC > 0, this implies that the multiplier is positive and the
constraint is binding, with leverage given by

LC = E(ρC)(1− θ).

Like for S-Banks, a positive amount of C-Bank capital KC > 0 requires zero expected
profit per unit of capital vC = 0, which by equation (6) implies

p = qCLC + β(1− F(LC))(ρ
+
C − LC).

Substituting for qC from the household FOC for C-Bank deposits (22) gives the result in
(24).

Since C-banks can issue insured debt that also generates utility for households, there
is no interior optimum to their capital structure choice. Analogous to S-banks, the scale
invariance of the C-bank problem requires that C-banks make zero profits. Combining
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this condition with the price of C-bank debt required by HH optimization in (22) gives
the equation in (24).

II.d Proofs for Main Text

Proof of proposition 1. The proposition assumes identical distributions for bank-idiosyncratic
shocks, i.e. FS = FC = F. Then the first-order conditions for S- and C-bank leverage are
given by

f (Lj)Lj = ψHj(LSKS, LC(1− KS)) (14)

for j = S, C respectively. The first-order condition for the S-bank capital share is

(1− F(LS))(ρ
+
S − LS)− LSψHS(LSKS, LC(1−KS)) = (1− F(LC))(ρ

+
C − LC)− LCψHC(LSKS, LC(1−KS)).

(15)
We conjecture and verify that the optimal allocation features equal leverage

LS = LC.

Under this assumption, (14) imply H̃S(RS) = H̃C(RS), using the definition from (4) and
(5), or

α

[
α + (1− α)

1
Rε

S

] 1−ε
ε

= (1− α) [αRε
S + 1− α]

1−ε
ε .

It is easy to verify that the solution to this equation is

RS =

(
α

1− α

) 1
1−ε

,

implying H̃S(RS) = H̃C(RS) = 1. Given this solution, we indeed get that LS = LC as
conjectured from (14).

Since
RS =

LSKS

LCKC
=

KS

KC
,

we obtain the solution for the capital shares in the proposition.
Plugging this solution back into either condition (14) gives an implicit equation for
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optimal leverage

L∗ f (L∗) =

ψ(1− α)

(
α

(
α

1− α

) ε
1−ε

+ 1− α

) 1−ε−γ
ε
(

(1− α)1/(1−ε)

α1/(1−ε) + (1− α)1/(1−ε)

)−γ


1
1+γ

.

(16)

Proof of proposition 2.

Proof. This proposition assumes that bank-idiosyncratic shocks are distributed Uniform[0, 1].
Given this assumption, we can write the S-bank leverage condition as

LS = ψHS(AS, AC), (17)

and the definition of the liquidity wedge m as

LC = ψ(1 + m)HC(AS, AC). (18)

Further, the capital market condition (26) simplifies to

L2
S = L2

C + 2LCψHC (AS, AC) , (19)

which combined with (17) and (18) gives

LS =

√
m + 3
m + 1

LC. (20)

Part (i) follows directly from this relation: for any value of m ∈ (−1, ∞) we have LS > LC.
In particular, at the “planner solution” of m = 0, we have LS =

√
3LC.

For part (ii), combining (20) with (17) and (18), we get the following equation in m and
the deposit ratio RS

H̃S(RS) =
√
(m + 1)(m + 3)H̃C(RS),

using the definitions in (4) and (5). Defining the wedge factor M =
√
(m + 1)(m + 3)

this can be written as

α

[
α + (1− α)

1
Rε

S

] 1−ε
ε

=M(1− α) [αRε
S + 1− α]

1−ε
ε ,
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which can be rearranged to

α(1− α)
ε

1−εM
ε

1−ε R2ε
S +

(
(1− α)

1
1−εM

ε
1−ε − α

1
1−ε

)
Rε

S − (1− α)α
ε

1−ε = 0.

This is an exponential polynomial of the form

Aexp(2εx) + Bexp(εx) + C = 0,

with x = log(RS) and

A = α(1− α)
ε

1−εM
ε

1−ε

B =
(
(1− α)

1
1−εM

ε
1−ε − α

1
1−ε

)
C = −(1− α)α

ε
1−ε .

Given α ∈ [0, 1], the unique real root is

x =
1
ε

log

 (1− α)
(

α
1−α

) 1
1−ε

αM
ε

1−ε

 ,

which simplifies to

RS =
AS

AC
=

(
1
M

) 1
1−ε
(

α

1− α

) 1
1−ε

,

which is equation (28) in the main text. To get the result for the capital ratio KS/KC in
equation (28), note that

RS =
LSKS

LCKC
=

√
m + 3
m + 1

KS

KC
,

using (20), which implies
KS

KC
=

1 + m
M RS.

To prove part (iii), suppose the regulator in the competitive equilibrium can choose θ

such that m = 0, which yields the planner solution for C-bank leverage LC = ψHC(AS, AC)

(the proof to proposition 3 below establishes that there is unique mapping between θ and
m). Choosing m = 0 implies M =

√
3, which yields a smaller S-bank ratio RS by fac-

tor 1/
√

3
1

1−ε compared to the planner solution in proposition 1. This proves that there is
no competitive equilibrium (for any value of θ and the other parameters) that simultane-
ously satisfies optimal leverage and S-bank share in the planner solution of proposition
1.
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The following lemma establishes that there is a unique mapping between the capital
requirement θ and the liquidity wedge m in the competitive equilibrium.

Lemma 3. The liquidity wedge m is strictly decreasing in the capital requirement θ everywhere,
i.e., dm

dθ < 0.

Proof. Since LC = 1
2(1− θ) and thus dθ

dLC
< 0, we prove the result by showing that dLC

dm > 0.
We start by substituting the definition ofHC from (3) into the optimality condition for C-
bank leverage (27) to obtain

LC = ψ(1 + m)(1− α) (αRε
S + (1− α))

1−ε−γ
ε A−γ

C .

Since AC = LCKC and by (28)

KC =
M

M+ (1 + m)RS
,

we can solve for L1+γ
C as a function of m and other parameters

L(m) ≡ L1+γ
C = ψ(1− α)(1 + m)M−γ (αRε

S + (1− α))
1−ε−γ

ε (M+ (1 + m)RS)
γ ,

whereM =
√
(1 + m)(3 + m) and RS are also functions of m. To establish that dLC

dm > 0,
it suffices to show that L′(m) > 0. Differentiating and collecting terms, we get

L′(m) = L1
m + L2

m,

where
L1

m = ψM−γ (αRε
S + (1− α))

1−2ε−γ
ε

(
1− α +

α

3 + m
Rε

S

)
,

and

L2
m = 2γ

αRε
S (6 + m(5 + m) + (1− ε)RSM)− (1− α)(1 + m + ε)RSM

(1 + m)(3 + m)(3 + m + RSM)
.

Clearly, L1
m > 0 for α ∈ [0, 1]. Thus L2

m > 0 is a sufficient condition for L′(m) > 0. L2
m > 0

if its numerator is positive:

αRε
S (6 + m(5 + m) + (1− ε)RSM)− (1− α)(1 + m + ε)RSM > 0.

To verify this condition, first note that

Rε
S =

1− α

α
RSM,
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such that the condition simplifies to

6 + m(5 + m) + (1− ε)RSM− (1 + m + ε) > 0.

Since RSM > 0 and ε ≤ 1, we can further reduce the condition to

m2 + 4m + 5 > ε.

Since m is bounded from below by −1, the left-hand side is bounded from below by 2.
Since ε ≤ 1, the right-hand side is bounded from above by 1. Thus the condition is
globally satisfied, proving that

dLC

dm
> 0 ⇔ dm

dθ
< 0.

Proof of proposition 3.

Proof. Part (1.i) follows directly from the binding bank leverage constraint LC = 1
2(1− θ).

For part (1.ii), recall that

RS =
AS

AC
=

(
1
M

) 1
1−ε
(

α

1− α

) 1
1−ε

.

We differentiate this expression with respect to m

dRS

dm
= − (2 + m)RS

(1− ε)M ,

implying dRS/dm < 0. Since by lemma 3 above, dm/dθ < 0, we have dRS/dθ > 0.
For the capital ratio, recall

KS

KC
=

LS AS

LC AC
=

√
1 + m
3 + m

RS,

by equation (28). We again differentiate with respect to m

dKS/KC

dm
= − (1 + m + ε)RS

(1− ε)(3 + m)M ,

which implies that d(KS/KC)/dm < 0. Again combining this with dm/dθ < 0 by lemma

22



3, we get d(KS/KC)/dθ > 0.
For part (1.iii), first recall that from the S-Bank first-order condition for leverage we

have
LS = ψHj(AS, AC).

Based on the definition ofHj(AS, AC) in (3) this can be written as

LS = ψα (α + (1− α)Rε
S)

1−ε−γ
ε A−γ

S .

Using AS = KSLS and

KS =
(1 + m)RS

M+ (1 + m)RS
,

this can be expressed as function of m and parameters

L̂S = L1+γ
S = ψα (α + (1− α)Rε

S)
1−ε−γ

ε ((1 + m)RS)
−γ(M+ (1 + m)RS)

γ.

We differentiate with respect to m

dL̂S

dm
=

L1
mL2

m
L3

m
,

with

L1
m = (1 + m)1−γM

ε
1−ε−2Rε−γ

S (M+ (1 + m)RS)
γ (α + (1− α)R−ε

S
) 1−γ

ε ,

L2
m = γ(3 + m)(1 + m + ε)Rε

S + (1− α) ((1− ε)(2 + m− γ)(3 + m) + (1− ε− γ)(2 + m)RSM) , and

L3
m = (1− ε) (1− α + αRε

S)
2M

1
1−ε (1 + (1 + m)RS) .

Since L1
m > 0 and L3

m > 0 for all parameter values, the sign of the derivative depends
on the sign of L2

m. This expression can be positive or negative, depending on parameters.
In particular, it can be negative if γ is large. The following result proves Corollary 1 in the
main text: if γH = 0, we get

L2
m|γH=0 = (1− α)(1− ε)(2 + m)(3 + m + RSM) > 0.

Thus for γH = 0, we have that dLS
dm > 0 and dLS

dθ < 0.
For part 2., we differentiate the household objective given by (20) in the decentralized
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equilibrium with respect to θ. After collecting terms, the derivate is

dU(θ)

dθ
=

dKC

dθ

(
ψHC(AS, AC)LC + (1− FC(LC))ρ

+
C
)
+

dKS

dθ

(
ψHS(AS, AC)LS + (1− FC(LS))ρ

+
S
)

+
dLC

dθ
(ψHC(AS, AC)KC − KCLC fC(LC)) +

dLS

dθ
(ψHS(AS, AC)KS − KSLS fS(LS)) .

Since in equilibrium LS fS(LS) = ψHS(AS, AC) and LC fC(LC) = (1 + m)ψHC(AS, AC),
this expression becomes

dU(θ)

dθ
=

dKC

dθ

(
ψHC(AS, AC)LC + (1− FC(LC))ρ

+
C
)
+

dKS

dθ

(
ψHS(AS, AC)LS + (1− FC(LS))ρ

+
S
)

−mψHC(AS, AC)KC
dLC

dθ
.

Further noting that dKC/dθ = −dKS/dθ (since KC = 1− KS), applying the capital market
condition (26), and noting that dLC/dθ = −E(ρC) gives expression (29) in the main text.
Since dKS/dθ > 0 by part (1.ii) and FC(LC)LC > 0, this expression is positive for any
m ≥ 0.

III Calibration Appendix

III.a Bank idiosyncratic shocks

In the model, we parameterize the idiosyncratic ρ shocks as gamma distributions. Let
the gamma cumulative distribution function be given by Γ(ρ; χ0, χ1) with parameters
(χ0, χ1). These parameters map into means µ

j
ρ and variances σ2

ρj as follows:

χ1 = σ2
ρ /µρ,

χ0 = µρ/χ1.

A standard result in statistics states that the conditional expectations are

E(ρ | ρ < x) = µρ
Γ(x; χ0 + 1, χ1)

Γ(x; χ0, χ1)
,

E(ρ | ρ > x) = µρ
1− Γ(x; χ0 + 1, χ1)

1− Γ(x; χ0, χ1)
,
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which we use to compute the conditional expectations ρj,− and ρj,+ used in bank payoffs
to shareholders and recovery values for creditors.

III.b Detailed calibration description

The main text focussed only on the five parameters (β, α, ψ, γH, ε) that govern households’
liquidity preferences. This appendix subsection discusses the calibration strategy for all
remaining parameters.

The parameters of our model belong to one of two groups. We can set parameters
of the first group (listed in Panel A of Table 1) in isolation of any other parameters, i.e.,
there is a one-to-one mapping between target moment in the data and corresponding
model parameter. The second group involves parameters listed in Panel B of Table 1
that we choose jointly to match moments of the ergodic distribution in our model to the
corresponding moments in the data. We start with a guess for the parameter values, solve
the model with these values, then calculate the moments from the ergodic distribution,
and compare these moments to the data. We iterate until the targeted moments in Panel
B of Table 1 closely match the data.

Using our definition of bank-dependent sector output, we can calculate the volatility
and autocorrelation (ρY) of the bank-independent sector output growth rate and back out
σY. Given σY, we set σZ to match the volatility of bank-dependent firms’ output growth.
We calibrate νZ, the scale of the bank dependent sector productivity shock, to target the
share of bank-dependent real GDP per capita in total GDP.2

Our model has two types of adjustment costs: investment and capital growth adjust-
ment costs. They are governed by the parameters φI and φK, respectively. The value of
φI determines the marginal cost of investment and therefore the investment volatility of
the bank dependent sector in the model. We use the volatility of 2.65% of the logged and
HP-filtered investment-asset time series as our target. We introduce capital growth ad-
justment costs in the model to reflect frictions in the capital flow between shadow- and
commercial banks. Hence, the asset growth volatility of either bank type should be infor-
mative about φK. Because it is straightforward to obtain, we choose to the asset growth
volatility of commercial banks as a target. We deflate this series, express it in per capita
terms, and calculate a quarterly growth rate of 0.5%. Based on NIPA data, we set δK to

2In the model, we calculate the bank-dependent GDP share as(
YC

t + YS
t

)
/
(

YC
t + YS

t + YH
t + Yt

)
.
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match the depreciation rate of the capital stock to 2.5% per quarter. We set η to 0.667, the
labor share in production.

We set the regulatory capital ratio θ in the baseline model to commercial banks’ aggre-
gate Tier-1 equity ratio 10%. Although the regulatory minimum ratio is lower in the data,
banks tend to keep a small capital buffer, presumably to withstand small shocks without
immediately risking supervisory action. To calibrate the deposit insurance fee κC, we use
the 2016 FDIC report that states that banks paid $10 billion in FDIC insurance fees on
an insurance fund balance of $83.162 billion. This represents 1.18% of insured deposits,
implying a κC of 14.2 basis points per dollar of insured deposits.3

Banks’ default behavior is predominately governed by five parameters (δj, ξ j, with
j ∈ {C, S}, and πB). The non-pecuniary default penalties δj determine default thresh-
olds of both types of banks. Typically, the default threshold is assumed to be zero with
the reasoning that default occurs whenever equity holders are wiped out. However, dis-
tressed firms’ franchise value is often difficult to measure. Rather than assuming a zero
threshold, we use default rates in the data to inform our choice of δj. To calibrate the de-
fault rates, we use commercial banks’ average quarterly loan net-charge off ratio of 0.23%
and the quarterly default rate on non-bank financial bond defaults of 0.28% as targets.
The bankruptcy costs parameters ξ j with j ∈ {C, S} determine how much of banks’ asset
value can be recovered to pay out their creditors in case of default. For commercial banks,
we target the recovery value on senior secured debt and loans of 71.9% (from Moody’s)
net of an additional loss of 33.18% due to the FDIC’s resolution costs. This means that
our target for the total recovery value on commercial bank debt amounts to 48.1%. For
shadow banks’ recovery value, we target the average recovery value of 38.1% of senior
unsecured debt and subordinated debt.

Using our data definition of banks’ valuation shocks ρj, t, we parameterize each bank
type’s Gamma distribution with the standard deviation that we set to the time-series aver-
age of the cross-sectional standard deviation of each bank type’s equity payout per share.
This results in 12.1% for commercial banks and 25.4% for shadow banks. The leverage
of shadow banks is informative about the shadow bailout probability parameter πB. A
higher value of πB means that a large fraction of S-bank debt is insured. For this reason,
creditors do not fully price the default risk of S-banks, lowering S-banks’ incentives to
internalize default costs. S-banks can then increase their equity valuation by increasing
leverage. Hence, we use S-bank leverage of 87% as a target for πB.4

3https://www.fdic.gov/about/strategic/report/2016annualreport/ar16section3.pdf
4Note that our shadow bank definition includes GSEs that tend to be very highly levered. Finance

companies, also included in our definition of shadow banks, have typically lower leverage ratios.
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The behavior of runs is governed by several parameters in the model. We match the
bank asset payoffs during the run state to 26% based on Campbell, Giglio, and Pathak
(2011), and the fraction of households that run on banks during a run state to 0.333 con-
sistent with Covitz, Liang, and Suarez (2013). We set the run state probabilities such that
(i) the unconditional run probability matches the occurrence of banking panics over our
sample period and (ii) the average length of the run state equals just over a quarter. The
remaining parameter to be determined is the depreciation rate of the capital stock during
a run state δK. This parameter is important for the discount rate on assets during the run
state. To determine this parameter, we pick the average haircut of 15.1% documented by
Gorton and Metrick (2009) as a target.5

III.c Derivation of liquidity spread regression

To motivate our regression design for calibrating ε and γH, we derive an equation for
the model spread between the rate on S-bank and C-bank debt. The starting point are
the household first-order conditions for holdings of the two types of debt, (47) and (48),
under the simplifying assumptions that πB = 0 and πR

t+1 = 0 (these assumptions do
not affect the fundamental conclusions from the derivation). Since we are looking for
a simple empirical relationship, we further suppress the expectations operators. Under
these assumptions, the equations are

qC
t = Mt,t+1

(
1 + MRSC

t+1

)
qS

t = Mt,t+1

(
1− FS

ρ,t+1 + FS
ρ,t+1rS

t+1 + MRSS,t+1

)
,

where

MRSS,t = αψCγ
t H−γH

t

(
Ht

AS
t

)1−ε

, (21)

MRSC,t = (1− α)ψCγ
t H−γH

t

(
Ht

AC
t

)1−ε

, (22)

and

Mt,t+1 = β

(
Ct+1

Ct

)−γ

.

We perform a first-order log-linear expansion of both conditions around the deterministic
steady state of the model. Variables without time subscript and a bar (x̄) denote steady

5See the haircut for various asset classes during the crisis in Figure 2 in Gorton and Metrick (2009)
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state values, and hatted (x̂) variables denote log-deviations from steady state. The usual
log-linearization techniques give

q̂C
t = −γĈt+1 +

β ¯MRSC

q̄C
ˆMRSC

t+1,

and

q̂S
t =

β

q̄S

[(
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t+1

)
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(
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)
F̂S

ρ,t+1 + F̄Sr̂Sr̂S
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]
....

+
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(
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Āε
C
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Further expanding

ˆMRSj
t = γĈt + (1− ε− γH) Ĥt − (1− ε) Âj

t

and

Ĥt = α
(AS)ε

Hε
ÂS

t + (1− α)
(AC)ε

Hε
ÂC

t ,

we can compute the spread q̂C
t − q̂S

t and collect terms to get
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The coefficients in front of the liquidity quantities ÂS
t+1 and ÂC

t+1 in equation (23) re-
veal the role of γH and ε for the effect of debt quantities on the spread. Clearly, if ε = 1
(perfect substitutes) and γH = 0 (constant returns in total liquidity), the liquidity quan-
tity terms drop out and thus do not affect the spread. If ε = 1 and γH > 0, the equation
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becomes

ˆqC,t − ˆqs,t = M̂t+1
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i.e., in this case it is only the total quantity of liquidity services Ĥt that matters but not the
type of liquidity services.

For simplicity further assume that ξS = 1. This implies that we run the following
regression:

ˆqC,t − ˆqs,t =ωAS ˆAS,t + ωAC ˆAC,t + ωmM̂t + ωFS
F̂S

ρ,t + ωCĈt,

where the ω’s are regression coefficients that map into the log-linearization coefficients of
equation (23) as stated in the main text in Eq. (31).

III.d Untargeted data momemts

The data for Table 3 covers the period from 1999 Q1 to 2019 Q4. All statistics are for the
HP filtered business cycle component.

We download the real personal consumption expenditures series from FRED (Federal
Reserve Bank of St. Louis). This series is in billions of chained 2012 dollars and seasonally
adjusted. We express this series in per capita terms. To get the per capita time series,
we divide the real GDP series by the real GDP per capita series in billions, both series
downloaded from FRED. Then we take logs and apply the HP filter. We use the HP-
filtered real GDP per capita series to calculate the business cycle correlations. We define
investment as described in the calibration Section 4.2. It is the real gross private domestic
investment series, expressed in billions of chained 2012 dollars divided and per capita
terms. Then we take logs and apply the HP filter.

We calculate leverage for S-banks using data from Compustat, defining firms as S-
banks as described in Section 4.2 in paragraph “parameters to match moments of the
ergodic distribution”. Book leverage is defined as the ratio of total liabilities (ltq) to total
assets (atq). Market leverage is defined as the ratio of total liabilities (ltq) to the market
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value of assets, defined as the sum of the market value of equity (cshoq*prccq) and total
liabilities (ltq). We apply the HP filter to each series and calculate its standard deviation
and business cycle correlation. To calculate the market leverage rate for C-banks, we use
Compustat/CRSP data in addition to BHC data to get the market value of equity for the
subset of publicly traded BHCs.

We define the data counterpart of S-bank liquidity provision using Flow of Funds data
as the sum of money market mutual fund shares (Table L.206), repurchase agreements not
involving commercial banks or the Fed (the total from Table L.207 less repos by the Fed
and commercial banks), and financial sector commercial paper (Table L.209). We measure
total liquidity provision as the sum of shadow bank liquidity provision and commercial
bank liquidity provision, the latter defined as total deposits of BHCs.

We define the yield C, yield S, and the liquidity benefit in the data as described in
Section 4.2. That is, we use the deposit rate BHCs pay on deposits for yield C, and the
AA rated financial commercial paper series downloaded from FRED for yield S. We use
the option-based measure of the riskfree rate without a liquidity premium as calculated
by Van Binsbergen, Diamond, and Grotteria (2019) to calculate a liquidity premium. Note
that the option based riskfree rate time series is slightly shorter, starting in 2004 Q1 and
ending in 2018 Q1. We map the spread between the rate on S-bank and C-bank debt to
the spread between the AA-rated financial commercial paper series and deposit rates.

III.e Simulation Data Variables

For our post-crisis simulation exercise, we download quarterly data for the period from
2008 to 2018.

We measure bank-dependent sector output (BDS output in Fig. 2) by applying the
share of bank-dependent sales (saleq) from Compustat to the real GDP per capita series
from FRED, Federal Reserve Bank of St. Louis. We follow the definition in Kashyap,
Lamont, and Stein (1994) to classify firms as bank-dependent if they do not have a S&P
long-term credit rating. Because mortgages make up the largest share of the bank loan
portfolio, we also add construction and real estate firms as identified by SIC codes 6500-
6599 (real estate), 1500-1599 (construction), and 1700-1799 (construction contractors, spe-
cial trades) to the set of bank dependent firms. We consider all other firms as bank-
independent. We measure investment of the bank dependent sector (BDS investment)
as the ratio of capital expenditures (capxq) to assets (atq) from Compustat using the same
definition of bank dependent firms. We define consumption as the quarterly time series of
real personal consumption per capita, in chained 2012 dollars, downloaded from FRED,
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Federal Reserve Bank of St. Louis.
We define aggregate liquidity as the sum of shadow bank debt and commercial bank

liquidity provision. We define the shadow bank liquidity supply as the sum of money
market mutual fund shares (Table L.206 in the Flow of Funds), repo (Table L.207) less the
repo position of the Fed and banks, and commercial paper from the domestic financial
sector (Table L.209). We define the commercial bank liquidity supply as deposits using
the sum of total deposits of BHCs. We then express these time series in chained 2012
dollars and in per capita terms. We calculate the S-bank debt share as the ratio of the
shadow bank liquidity supply as defined above in total liquidity provision.

The shadow bank leverage time series comes from Compustat data using SIC codes
to define shadow banks. Shadow banks are GSE and Finance companies (27%) with SIC
codes 6111-6299 (excluding SIC codes 6200, 6282, 6022, and 6199), REITS (66%) with SIC
code 6798, and Miscellaneous investment firms (4%) with SIC codes 6799 and 6726. We
measure leverage as the value weighted total debt over asset ratio. This means that each
quarter we sum up total liabilities and total assets of all financial institutions that meet
our shadow bank definition. Leverage is then just the ratio of total liabilities to total
assets for each quarter. The commercial bank leverage series is derived similarly using
also Compustat data. We define commercial banks as financial institutions with SIC codes
from 6000 to 6089 or SIC code 6712.

III.f Parameter Sensitivity Checks

Table B presents the results of the model if a single parameter is changed relative to the
benchmark calibration of Section 4. In the first three columns, we focus on parameters of
the liquidity function (19).

First, we perturb the scale of the liquidity benefit ψ; as one would expect, higher ψ

raises liquidity production (line 16) and convenience yields (lines 10–11). As a result, de-
posit rates for both types of banks decline (lines 8–9), the banking sector expands, and
it funds more productive capital (line 1). Because the marginal utility from liquidity is
higher, S-banks increase leverage (line 5). Overall, the economy suffers higher dead-
weight losses from bank failures of both kinds of banks, partially the effect of higher
GDP on consumption (line 17). Higher ψ exacerbates the implicit subsidy to C-banks
from deposit insurance and thus increases the C-bank market share.

Column (2) perturbs the weight on S-bank liquidity α. Predictably, higher α, leads
to an expansion in the S-bank share (lines 2-3). Raising α increases the wedge between
decentralized equilibrium and the optimal planner allocation; in other words, the S-bank
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sector expands by less than it ideally would for this increase in α. This reduces overall
liquidity production (line 16), which raises convenience yields (lines 10–11). The capital
stock, but also S-bank leverage and defaults, increase.

In column (3), we vary ε, which parameterizes the elasticity of substitution between
S-bank and C-bank debt. The main effect of higher ε is a smaller S-bank sector, as house-
holds care less about the composition of liquidity services and C-bank have a competitive
advantage.

We do not include variations in γH in Table B since the effect of this parameter is
discussed at length in Section 5.2 of the main text. Overall, our take-away from these
liquidity parameter variations relative to the baseline is that they affect model moments
in predictable and sufficiently distinct ways that allow for separate “identification” of the
parameters’ values when calibrating.

In column (4), we vary dispersion of S-banks’ idiosyncratic productivity shocks. An
increase in this parameter makes S-banks riskier at the same level of leverage. As a result,
S-bank debt becomes more expensive, and S-banks reduce leverage (line 5), yet not by
enough to prevent a higher default probability (line 13). Lower leverage implies that
their equity is less attractive, causing a somewhat smaller S-bank share. The level of σρS is
a key parameter for the effect of increased capital requirements: the riskier S-banks are in
the model, the less the economy benefits from shifting intermediation activity away from
C-banks to S-banks.

In column (5), we consider variations of the S-bank bailout probability πB. If S-banks
do not receive any guarantees of their liabilities as in the simple model of Section 3, they
choose 13% lower leverage than in the benchmark model (line 5). Their capital share
rises, yet their debt share declines. Increasing πB by only 1.5pp relative to the benchmark
has large opposite effects on the S-bank leverage (+5.31%) and defaults (+169.25%). This
comparison demonstrates that πB has large and non-linear effect on the behavior of S-
banks, and is a key parameter for determining their leverage choice.

Table C evaluates different specifications of the liquidity function described in the
main text, equations (A1) and (A2). In these functions, the relative weight that S-banks
receive in liquidity production depends directly on their default risk: greater S-bank de-
faults reduce their liquidity benefit. This specification nests the function used in the main
text, (19), as special case with ν = 0. As we can see, the net effect of these changes is
similar to a reduction in α, but with a quantitatively smaller effect than the direct reduc-
tion in α considered above in Table B. In fact, we verified that our baseline model with
a reduction in α by 5% yields very similar aggregate moments to the model in column 2
of Table C. The reason is that time-variation in the liquidity benefits produced by S-bank
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debt makes this debt less attractive for households unconditionally. As result, households
substitute to C-bank debt, which leads to a smaller S-bank share of capital and debt. This
comparison demonstrates that our preference specification is flexible enough to accom-
modate a more direct interaction between default risk and liquidity premia; however, for
a reasonable S-bank default rate level and volatility, this interaction is sufficiently cap-
tured by the level of α.

33



Table B: Parameter Sensitivity Checks

(1) ψ (2) α (3) ε (4) σρS (5) πB

−25% +25% −25% +25% −25% +25% −5% +5% = 0 = .865

Capital and Debt

1. Capital -2.57 2.47 -0.83 0.74 0.05 -0.05 -0.03 0.01 0.38 -0.26
2. Debt share S 4.44 -2.30 -29.89 31.32 3.03 -3.34 1.50 -1.46 -8.10 0.99
3. Capital share S 6.56 -3.90 -28.88 29.89 2.93 -3.22 0.25 -0.29 1.37 -2.38
4. Capital S 3.82 -1.52 -29.46 30.84 2.98 -3.27 0.22 -0.28 1.75 -2.60
5. Leverage S -3.19 2.53 -0.88 0.59 0.06 -0.07 1.83 -1.70 -13.27 5.31
6. Leverage C -0.01 -0.01 0.02 0.03 0.03 -0.01 0.00 -0.00 0.02 0.02
7. Early Liquidation (runs) -4.18 3.49 -1.32 0.95 0.16 -0.19 1.75 -1.62 -12.77 4.95

Prices

8. Deposit rate S 11.75 -9.98 3.52 -2.96 -0.17 0.22 0.39 -0.19 -12.28 11.57
9. Deposit rate C 15.15 -14.01 4.47 -3.64 -0.26 0.29 0.20 -0.12 -2.44 1.53
10. Convenience Yield S -22.49 20.50 -6.65 4.43 0.32 -0.40 -1.97 1.97 13.89 -3.07
11. Convenience Yield C -18.71 17.48 -5.40 3.55 0.31 -0.34 -0.27 0.25 3.46 -1.97
12. Corr(Conv. Yield C,Y) -17.29 8.75 4.24 -10.18 2.10 -2.50 -1.28 1.23 8.40 -13.82

Welfare

13. Default S -43.08 50.34 -13.52 9.90 0.64 -0.81 -12.32 14.26 -94.65 169.25
14. Default C -1.76 1.23 0.11 1.43 0.83 -0.40 0.04 -0.02 0.90 0.54
15. GDP -0.19 0.18 -0.06 0.05 0.00 -0.00 -0.00 0.00 0.03 -0.02
16. Liquidity Services -4.00 3.44 8.95 -4.98 -0.38 0.43 0.50 -0.48 -3.81 1.40
17. Consumption -0.022 0.015 0.000 -0.006 -0.001 0.001 0.000 -0.001 0.031 -0.047
18. Vol(Liquidity Services) 17.82 -11.78 1.51 1.03 -0.59 0.48 2.54 -2.49 -13.33 -14.73
19. Vol(Consumption) 0.52 -0.39 -0.99 1.85 0.17 -0.13 0.07 -0.05 -0.68 5.46

This tables presents moments of the simulated model for different single-parameter changes. In columns (1)-(3), we decrease or increase the param-
eter by 25%. In Column (4), we de-/increase the volatility of S-banks’ idiosyncratic shock by 5%. In Column (5), we set the bailout probability of
S-banks to zero or increase it to 86.5%. All numbers are percentage changes relative to the baseline.
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Table C: Time-varying S-bank Liquidity Preference Function

(A1) with ν = 1 (A1) with ν = 10 (A2) with ν = 1

Capital and Debt

1. Capital -0.01 -0.09 -0.02
2. Debt share S -0.37 -3.60 -0.93
3. Capital share S -0.36 -3.49 -0.88
4. Capital S -0.37 -3.57 -0.90
5. Leverage S -0.00 -0.05 -0.05
6. Leverage C -0.00 -0.01 -0.01
7. Early Liquidation (runs) 0.01 0.07 -0.23

Prices

8. Deposit rate S 0.03 0.35 0.08
9. Deposit rate C 0.05 0.47 0.11
10. Convenience Yield S -0.06 -0.64 -0.14
11. Convenience Yield C -0.06 -0.57 -0.13
12. Corr(Conv. Yield C,Y) 0.42 3.91 -2.98

Welfare

13. Default S -0.13 -1.38 -0.29
14. Default C -0.10 -0.39 -0.20
15. GDP -0.00 -0.01 -0.00
16. Liquidity Services 0.08 0.82 0.22
17. Consumption 0.000 0.001 0.000
18. Vol(Liquidity Services) -0.07 -0.59 22.84
19. Vol(Consumption) -0.02 -0.16 -0.05

This tables presents moments of the simulated model for different specifications of the utility function for
liquidity, see Section 4.4 in the main text. All numbers are percentage changes relative to the baseline.
Columns 1 and 2 use specification (A1), which means that S-bank liquidity supply in the liquidity aggrega-
tor H is multiplied by (1− FS)ν. The first column sets ν = 1, and the second column sets ν = 10. The third
column instead uses specification (A2) that also incorporates S-bank run risk and bailout probability.
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