Financial Regulation in a Quantitative Model of the Modern Banking System

Juliane Begenau¹ Tim Landvoigt²

January 20, 2021

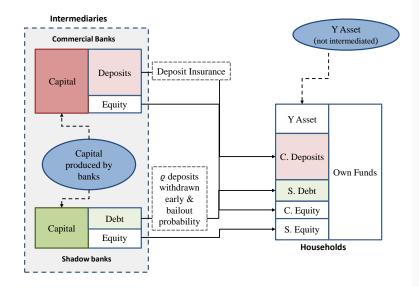
¹Stanford & NBER & CEPR

²Wharton & NBER & CEPR

Motivation

- ► Financial System: regulated & unregulated banks
 - provide access to "intermediated" assets, e.g. long term credit
 - funded with liquidity services providing debt
 - both bank types compete with each other
- Effects of financial regulation on a subset of banks?
 - Does tighter regulation cause a shift to shadow banks?
 - Does this make the financial system riskier?
- Answers depend on determinants of the relative bank type size in equilibrium and banks' leverage choice
- Requires quantitative general equilibrium analysis
- Study effect of capital requirements

Model Overview



- ► Liquidity demand for shadow (S-) & com. (C-) bank debt
- S- and C-banks compete in liquidity provision
- Deposit insurance gives C-banks a comp. advantage
- ► Two key equilibrium forces determine rel. size & leverage
 - 1. HH's liquidity demand implies that S-bank deposit rates fall when C-bank deposits fall GE effect (*demand effect*)
 - 2. Endog. allocation of S- and C-bank equity (competition effect)

Effect of $\uparrow \theta$ (cap req) when C-bank leverage determined by $D^{C}/E^{C} = \theta$

- 1. <u>Demand effect</u>: Lower D^{C} reduces r^{S} and increases D^{S} \Rightarrow Fixing E^{S} , higher S-bank leverage D^{S}/E^{S} & S-bank share
- 2. Competition effect: Higher θ reduces C-banks' competitive advantage ($\uparrow E^S/E^C$) \Rightarrow Higher E^S reduces S-leverage & increases S-bank share
- Unambigiously positive effect on S-bank share
- ► Leverage: which effect dominates is a quantitative question

Key: HH's liquidity demand parameters pinned down using
(1) aggregate liquidity premium (Van Binsbergen et al, 2019)
(2-3) S-& C-bank deposit spread sensitivity to S-&C-bank debt
(4) S-bank share based on Fed study (Gallin 2013)

- Model matches
 - Higher fragility of S-banks
 - Bank-dependent output and investment characteristics

Quantitative Effects: increase θ by 10pp

- \times 11% reduction in C-bank leverage
- \times S-bank deposit rate falls by 2%
- \times S-bank debt share increases by 7%
- \times S-bank leverage increases by only 80bps \Rightarrow Demand effect dominates but is counter-balanced by competition effect
 - \Rightarrow Overall financial stability increases w/ θ
- Welfare maximized at θ = 16%: trades-off reduction in liquidity provision against incraese in consumption due to higher financial stability

- 1. 2-period model of the mechanism
- 2. Dynamic quantitative model
 - Differences to simple model
 - Calibration highlights
 - Quantitative results
- 3. Experiment: recovery after financial crisis

• Dates t = 0 and t = 1

- Unit mass of HH endowed with 1 unit of capital at t = 0
- C-banks and S-banks (unit mass) purchase capital financed with equity and deposit issuance to households

- Dates t = 0 and t = 1
 - Unit mass of HH endowed with 1 unit of capital at t = 0
 - C-banks and S-banks (unit mass) purchase capital financed with equity and deposit issuance to households
 - Capital produces 1 unit of consumption at t = 1 if held by banks
 - Capital much less productive if held by households

- Dates t = 0 and t = 1
 - Unit mass of HH endowed with 1 unit of capital at t = 0
 - C-banks and S-banks (unit mass) purchase capital financed with equity and deposit issuance to households
 - Capital produces 1 unit of consumption at t = 1 if held by banks
 - Capital much less productive if held by households

Household preferences: bank deposits provide liquidity services

$$U = C_0 + \beta (C_1 + \psi H(A_S, A_C))$$

with A_j , j = S, C, are deposits of banks held by households

$$\max_{K_{S} \ge 0, B_{S} \ge 0} \quad \underbrace{q_{S}(B_{S}, K_{S})B_{S} - pK_{S}}_{\text{equity raised at } t = 0} + \beta \underbrace{\max\left\{\rho_{S}K_{S} - B_{S}, 0\right\}}_{\text{dividend paid at } t = 1}$$

$$\max_{K_S \ge 0, B_S \ge 0} \quad \underbrace{q_S(B_S, K_S)B_S - pK_S}_{\text{equity raised at } t = 0} + \beta \underbrace{\max\left\{\rho_S K_S - B_S, 0\right\}}_{\text{dividend paid at } t = 1}$$

• Bank issues risky debt at price $q_S(B_S, K_S)$

- Creditors price default risk
- ▶ Bank internalizes effect of choice (B_S, K_S) on debt price

$$\max_{K_S \ge 0, B_S \ge 0} \quad \underbrace{q_S(B_S, K_S)B_S - pK_S}_{\text{equity raised at } t = 0} + \beta \underbrace{\max\left\{\rho_S K_S - B_S, 0\right\}}_{\text{dividend paid at } t = 1}$$

- Bank issues risky debt at price $q_S(B_S, K_S)$
 - Creditors price default risk
 - Bank internalizes effect of choice (B_S, K_S) on debt price
- Limited liability with costly bankruptcy: if default, equity is wiped out and all assets lost (no recovery for creditors)

$$\max_{K_S \ge 0, B_S \ge 0} \quad \underbrace{q_S(B_S, K_S)B_S - pK_S}_{\text{equity raised at } t = 0} + \beta \underbrace{\max\left\{\rho_S K_S - B_S, 0\right\}}_{\text{dividend paid at } t = 1}$$

- Bank issues risky debt at price $q_S(B_S, K_S)$
 - Creditors price default risk
 - ▶ Bank internalizes effect of choice (B_S, K_S) on debt price
- Limited liability with costly bankruptcy: if default, equity is wiped out and all assets lost (no recovery for creditors)
- Bank-idiosyncratic payoff shock

$$\max_{K_C \ge 0, B_C \ge 0} \quad \underbrace{q_C B_C - pK_C}_{\text{equity raised at } t = 0} + \beta \underbrace{\max \left\{ \rho_C K_C - B_C, 0 \right\}}_{\text{dividend paid at } t = 1}$$

subject to

$$B_C \leq (1-\theta)\mathsf{E}(\rho_C)K_C$$

$$\max_{K_C \ge 0, B_C \ge 0} \quad \underbrace{q_C B_C - pK_C}_{\text{equity raised at } t = 0} + \beta \underbrace{\max\left\{\rho_C K_C - B_C, 0\right\}}_{\text{dividend paid at } t = 1}$$

subject to

$$B_C \leq (1-\theta)\mathsf{E}(\rho_C)K_C$$

Differences to S-bank problem

Government-insured debt is riskfree to creditors

• Regulatory capital requirement θ

Households and Government

 HH choose purchases of debt and equity of each bank to max utility

$$\max_{\{A_{j}, S_{j}\}_{j=S,C}} C_{0} + \beta(C_{1} + \psi H(A_{S}, A_{C}))$$

s.t. $C_{0} = \underbrace{p}_{\text{sell cap.}} \underbrace{-q_{S}A_{S} - q_{C}A_{C} - p_{S}S_{S} - p_{C}S_{C}}_{\text{buy securities}}$
 $C_{1} = (1 - L_{S})A_{S} + A_{C} - T$
 $+ S_{S} \underbrace{\frac{1}{2}K_{S}(1 - L_{S})^{2}}_{\text{div. from S-bank}} + S_{C} \underbrace{\frac{1}{2}K_{C}(1 - L_{C})^{2}}_{\text{div. from C-bank}}$

where

$$T = L_C B_C$$

lump-sum taxes to bail out failing C-banks

Equilibrium

Market clearing

$$S_{S} = 1$$
$$S_{C} = 1$$
$$A_{C} = B_{C}$$
$$A_{S} = B_{S}$$
$$K_{S} + K_{C} = 1.$$

• Resource constraints:
$$C_0 = 0$$
 and

$$C_1 = \frac{1}{2} \left(1 - K_C L_C^2 - K_S L_S^2 \right)$$

Time-1 consumption clarifies fundamental trade-off
 Bank leverage causes bankruptcies and deadweight losses
 But some leverage necessary to produce liquidity services

Decentralized Equilibrium: HH's demand for S-bank and Cbank debt

• Define bank leverage
$$L_j = B_j/K_j$$
 and $F_S()$ is c.d.f. of ρ_S

Household FOC for S-bank debt

$$q(L_{S}) = \beta(\underbrace{1 - F_{S}(L_{S})}_{\text{payoff}} + \underbrace{\psi H_{S}(A_{S}, A_{C})}_{\text{liq. premium}})$$

Household FOC for C-bank debt

$$q_{C} = \beta(\underbrace{1}_{\text{payoff}} + \underbrace{\psi H_{C}(A_{S}, A_{C})}_{\text{liq. premium}})$$

Decentralized Equilibrium: S-Bank Problem

$$\max_{K_{\mathcal{S}} \ge 0, B_{\mathcal{S}} \ge 0} q_{\mathcal{S}}(B_{\mathcal{S}}, K_{\mathcal{S}})B_{\mathcal{S}} - pK_{\mathcal{S}} + \beta \max\left\{\rho_{\mathcal{S}}K_{\mathcal{S}} - B_{\mathcal{S}}, 0\right\}$$

• Define
$$\rho_S^+ = \mathsf{E}(\rho_S | \rho_S > L_S)$$

Decentralized Equilibrium: S-Bank Problem

$$\max_{K_{\mathcal{S}} \geq 0, B_{\mathcal{S}} \geq 0} q_{\mathcal{S}}(B_{\mathcal{S}}, K_{\mathcal{S}})B_{\mathcal{S}} - pK_{\mathcal{S}} + \beta \max \{\rho_{\mathcal{S}}K_{\mathcal{S}} - B_{\mathcal{S}}, 0\}$$

• Define
$$\rho_S^+ = \mathsf{E}(\rho_S | \rho_S > L_S)$$

- Optimization regarding L^S and A^S leads to
- 1. Marginal default losses equal marginal liquidity benefit

$$L_S f_S(L_S) = \psi H_S(A_S, A_C).$$

Decentralized Equilibrium: S-Bank Problem

$$\max_{K_{\mathcal{S}} \geq 0, B_{\mathcal{S}} \geq 0} q_{\mathcal{S}}(B_{\mathcal{S}}, K_{\mathcal{S}})B_{\mathcal{S}} - pK_{\mathcal{S}} + \beta \max \{\rho_{\mathcal{S}}K_{\mathcal{S}} - B_{\mathcal{S}}, 0\}$$

• Define
$$\rho_S^+ = \mathsf{E}(\rho_S | \rho_S > L_S)$$

- Optimization regarding L^S and A^S leads to
- 1. Marginal default losses equal marginal liquidity benefit

$$L_S f_S(L_S) = \psi H_S(A_S, A_C).$$

2. Constant returns implies S-banks earn zero expected profits

$$p = \beta \left((1 - F_S(L_S))\rho_S^+ + \psi L_S H_S(A_S, A_C) \right)$$

Decentralized Equilibrium: C-Bank Problem

Similar to S-bank problem except for leverage constraint

 $L_C \leq \mathsf{E}(\rho_C)(1-\theta),$

As long as marginal benefit of C-bank liquidity positive, ψH_C(A_S, A_C) > 0, the C-bank leverage constraint is always binding, implying L_C = E(ρ_C)(1 − θ), and C-banks' capital demand requires

$$p = \beta \left((1 - F_C(L_C))\rho_C^+ + \psi L_C H_C(A_S, A_C) + F_C(L_C)L_C \right).$$

- Both banks value payout and collateral value of K_i
- ▶ Plus, C-bank value K_C due to deposit insurance → Leads to higher C-bank share
- ► To compete, S-banks must provide higher payoff or liq. prem.

Efficiency Properties of Equilibrium

Assume liquidity preferences are

$$H(A_{S}, A_{C}) = \frac{\left(\alpha A_{S}^{\epsilon} + (1 - \alpha) A_{C}^{\epsilon}\right)^{\frac{1 - \gamma_{H}}{\epsilon}}}{1 - \gamma_{H}},$$

with $\gamma_H \geq 0$, $\epsilon \in (0,\infty)$

▶ Planner maximizes household utility under $\rho_S \sim \text{Uniform}[0,1]$

$$\frac{A_S}{A_C} = \frac{K_S}{K_C} = \left(\frac{\alpha}{1-\alpha}\right)^{\frac{1}{1-\epsilon}}$$

Relative size pinned down by liquidity preference

Optimal leverage is equalized across bank types L_S = L_C = L^{*} as banks have identical technology to produce liquidity, where L^{*} is a function of parameters

Implications for Decentralized equilibrium

- ► Factor *m* is a wedge b/w
 - Social marginal benefit of C-bank liquidity $\psi \mathcal{H}_C(A_S, A_C)$
 - Cost to society of producing this liquidity L_C
- In competitive equilibrium, C-banks overproduce liquidity, too much equity allocated to C-banks
- ► Competition effect means share of shadow banks in liquidity provision too small ⇒ not fixed by capital requirement
- Competition effect induced via
 - Equity investors need to be indifferent b/w S- & C-banks
 - C-bank distortion extends to S-banks

Proposition

- 1. Holding constant all other parameters, an increase in the capital requirement θ
 - (i) reduces C-bank leverage,
 - (ii) causes an expansion in the S-bank share: $\frac{d(A_S/A_C)}{d\theta} > 0$ and $\frac{d(K_S/K_C)}{d\theta} > 0$,
 - (iii) can either raise or lower optimal S-bank leverage, depending on model parameters,
- 2. For $m \ge 0$, a marginal increase in the capital requirement improves aggregate welfare.

Ambigious response of S-bank leverage

- \blacktriangleright Raising θ in the model two effects
 - 1. Competition Effect
 - Lowering C-bank leverage reduces equity return
 - Lowers competitive pressure on S-banks
 - c.p. lowers S-bank's optimal leverage
 - 2. Demand Effect
 - Decreasing returns to liquidity production, lower C-bank liquidity production increases marginal utility of liquidity
 - c.p. reduces q_S
 - c.p. increases S-bank's optimal leverage
- Which effect dominates depends on parameters!
 - E.g. higher decreasing returns of liquidity serices γ_H, stronger demand effect

- 1. 2-period model of the mechanism
- 2. Dynamic quantitative model
 - Differences to simple model
 - Calibration highlights
 - Quantitative results
- 3. Experiment: recovery after financial crisis

Dynamic Model: Key Differences

- 1. Infinite horizon model with bank-independent sector (endowment) and bank-dependent sector (production)
 - Banks have investment tech. w/ convex adj. costs
 - Convex capital adjustment costs
- 2. Riskier S-banks: runs and implicit bail-out guarantees
 - S-banks subject to stochastic deposit redemption shocks *ρ_t* More Details
 - Introduces additional losses through fire-sale
 - Government bails out S-bank *liabilities* with probability π_B

3. Risk averse households with preferences

$$U\left(C_t, H\left(A_t^S, A_t^C\right)\right) = \frac{C_t^{1-\gamma}}{1-\gamma} + \psi \frac{\left(\left[\alpha(A_t^S)^{\epsilon} + (1-\alpha)(A_t^C)^{\epsilon}\right]^{\frac{1}{\epsilon}}\right)^{1-\gamma_H}}{1-\gamma_H}$$

Portfolio choice of equity and debt of both types of banks
 Inelastic labor supply

Exogenous states

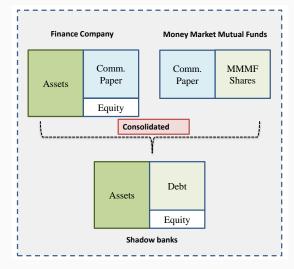
$$\log(Y_{t+1}) = (1 - \rho_Y)\log(\mu_Y) + \rho_Y\log(Y_t) + \epsilon_{t+1}^Y$$
$$Z_t = \phi^Z Y_t \exp(\epsilon_t^Z)$$

and ϱ_t follows a two-state Markov-process

Endogenous states

- 1. Capital stock
- 2., 3. C-bank and S-bank debt
 - 4. S-bank capital share
- Solve using non-linear projection methods
 - ▶ Probability of default bounded in [0,1]
 - Nonlinear dynamics because of bankruptcy option
- Report results for simulated model

Calibration: Consolidated View of Shadow Banks



	Value	Description	Target	Data	Model
β	0.993	Discount rate	C-bank debt rate	0.36%	0.39%
α	0.33	CES weight S-bank debt	Shadow banking share Gallin (2015)	34.0%	33.7%
ψ	0.0072	Liq. preference weight	Liq. premium BDG2019	0.21%	0.17%
γ_H	1.6	Liq. preference curvature	Reg. coefficient on AS	-0.19%	-0.14%
ϵ	0.2	Liq. type elasticity	Reg. coefficient on AC	0.50%	0.68%

Liquidity Preference Parameters (1/2)

- How are key liquidity preference parameters disciplined by data?
- ψ : level of liquidity premium
 - Van Binsbergen, Diamond, and Grotteria (2019) provide estimate of "risk-free rate w/o liquidity premium" based on option spreads
 - $\blacktriangleright \ \psi$ directly scales marginal liquidity benefit in model

Liquidity Preference Parameters (1/2)

- How are key liquidity preference parameters disciplined by data?
- ψ : level of liquidity premium
 - Van Binsbergen, Diamond, and Grotteria (2019) provide estimate of "risk-free rate w/o liquidity premium" based on option spreads
 - $\blacktriangleright \ \psi$ directly scales marginal liquidity benefit in model
- α : market share of S-banks
 - Higher α raises S-bank relative to C-bank premium
 - Lowers funding cost, increases demand for capital of S-banks

Liquidity Preference Parameters (2/2)

 $\underline{\gamma_{H}\ \&\ \epsilon:}$ curvature & elasticity of subs. b/w S- and C-banks

Determined by regression coefficients of spread on quantities

$$q_t^C - q_t^S = \mathsf{E}_t \left[\mathsf{M}_{t,t+1} \left(\mathsf{MRS}_{t+1}^C - \mathsf{MRS}_{t+1}^S + \mathcal{F}_{\rho,t+1}^S \right) \right]$$

Log-linear approximation of spread

- ▶ If $\epsilon = 1$ (perfect substitutes) and $\gamma_H = 0$ (CRS in liquidity), *quantities* of debt (A_S, A_C) do not matter for spread
- Regression of spread b/w deposit price and 3month AA CP price on S-bank and C-bank money-like liabilities and controls, leads to coefficients of -0.19% on A_S and 0.50% on A_C
- Matched in model with $\epsilon = 0.20$ (net substitutes) and $\gamma_H = 1.60$

Values		Target	Data	Model	
Bank leverage and default					
δ_{S}	0.390	Corp. bond default rate	0.28%	0.30%	
δ_C	0.204	Net loan charge-offs	0.23%	0.23%	
ξc	0.352	Secured recov. rate Moody's	48.1%	48.1%	
ξs	0.205	Unsecured recov. rate Moody's	38.1%	38.2%	
π_B	0.85	Shadow bank leverage	87.0%	83.2%	
	Runs				
$\underline{\delta}_{\kappa}$	2.5%	Avg. haircut (GM 2009)	15.1%	15.2%	

Increasing Capital Requirement

Larger shadow banking share, C-banks "exit", S-bank "enter" Demand effect dominates competition effect: higher S-bank leverage

	Benchmark	13%	16%	20%	30%	
	mean	mean	mean	mean	mean	
	Capital and Debt					
1. Capital	3.15	+0.2%	+0.4%	+.7%	+1.6%	
2. Debt share S	32%	+2.7%	+4.6%	+6.9%	+13.8%	
3. Leverage S	0.831	+0.2%	+0.4%	+0.8%	+1.8%	
4. Leverage C	0.899	-3.3%	-6.7%	-11.2%	-22.2%	
5. Early Liquidation (runs)	0.004	+0.3%	+0.6%	+1.1%	+2.5%	
		Price	es			
6. Deposit rate S	0.45%	-0.7%	-1.6%	-3.1%	-6.8%	
7. Deposit rate C	0.39%	-3.7%	-7.2%	-12.0%	-26.8%	
8. Conv. Yield S	0.28%	+1.4%	+3.3%	+6.3%	+14.3%	
9. Conv. Yield C	0.31%	+4.7%	+9.1%	+15.2%	+34.9%	

C-banks become safer, but S-banks riskier

	Benchmark	13%	16%	20%	30%
	mean	mean	mean	mean	mean
	Capital and Debt				
1. Capital	3.15	+0.2%	+0.4%	+.7%	+1.6%
2. Debt share S	32%	+2.7%	+4.6%	+6.9%	+13.8%
3. Leverage S	0.831	+0.2%	+0.4%	+0.8%	+1.8%
4. Leverage C	0.899	-3.3%	-6.7%	-11.2%	-22.2%
5. Early Liquidation (runs)	0.004	+0.3%	+0.6%	+1.1%	+2.5%
		Price	es		
6. Deposit rate S	0.45%	-0.7%	-1.6%	-3.1%	-6.8%
7. Deposit rate C	0.39%	-3.7%	-7.2%	-12.0%	-26.8%
8. Conv. Yield S	0.28%	+1.4%	+3.3%	+6.3%	+14.3%
9. Conv. Yield C	0.31%	+4.7%	+9.1%	+15.2%	+34.0%

Interest rates fall as liquidity premia rise \Rightarrow more investment

	Benchmark	13%	16%	20%	30%
	mean	mean	mean	mean	mean
	Capital and Debt				
1. Capital	3.15	+0.2%	+0.4%	+.7%	+1.6%
2. Debt share S	32%	+2.7%	+4.6%	+6.9%	+13.8%
3. Leverage S	0.831	+0.2%	+0.4%	+0.8%	+1.8%
4. Leverage C	0.899	-3.3%	-6.7%	-11.2%	-22.2%
5. Early Liquidation (runs)	0.004	+0.3%	+0.6%	+1.1%	+2.5%
		Price	es		
6. Deposit rate S	0.45%	-0.7%	-1.6%	-3.1%	-6.8%
7. Deposit rate C	0.39%	-3.7%	-7.2%	-12.0%	-26.8%
8. Conv. Yield S	0.28%	+1.4%	+3.3%	+6.3%	+14.3%
9. Conv. Yield C	0.31%	+4.7%	+9.1%	+15.2%	+34.0%

Defaults from C-banks decline, from S-banks rise

	BM	13%	16%	20%	30%
	mean	mean	mean	mean	mean
	We	elfare			
10. Default Rate S	0.30%	+3.1%	+7.4%	+14.1%	+34.1%
11. Default Rate C	0.23%	-65.1%	-89.4%	-98.3%	-100.0%
12. GDP	1.29	+0.0%	+0.1%	+0.1%	+0.2%
13. Liquidity Services	1.48	-2.2%	-4.22%	-7.0%	-14.1%
14. Consumption	1.21	+0.1%	+0.1%	+0.1%	+0.1%
15. HH Welfare		+0.04%	+0.05%	+0.4%	+0.04%

More consumption and lower liquidity provision

	BM	13%	16%	20%	30%
	mean	mean	mean	mean	mean
	We	elfare			
10. Default Rate S	0.30%	+3.1%	+7.4%	+14.1%	+34.1%
11. Default Rate C	0.23%	-65.1%	-89.4%	-98.3%	-100.0%
12. GDP	1.29	+0.0%	+0.1%	+0.1%	+0.2%
13. Liquidity Services	1.48	-2.2%	-4.22%	-7.0%	-14.1%
14. Consumption	1.21	+0.1%	+0.1%	+0.1%	+0.1%
15. HH Welfare		+0.04%	+0.05%	+0.4%	+0.04%

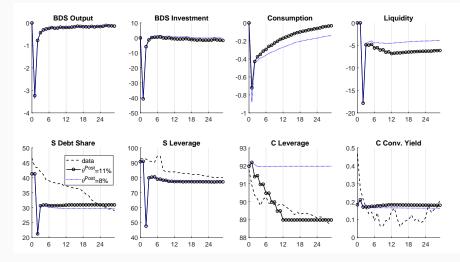
Welfare maximized at 16%

	BM	13%	16%	20%	30%
	mean	mean	mean	mean	mean
		We	elfare		
10. Default Rate S	0.30%	+3.1%	+7.4%	+14.1%	+34.1%
11. Default Rate C	0.23%	-65.1%	-89.4%	-98.3%	-100.0%
12. GDP	1.29	+0.0%	+0.1%	+0.1%	+0.2%
13. Liquidity Services	1.48	-2.2%	-4.22%	-7.0%	-14.1%
14. Consumption	1.21	+0.1%	+0.1%	+0.1%	+0.1%
15. HH Welfare		+0.04%	+0.05%	+0.4%	+0.04%

Experiment: Recovery from the Financial Crisis

- Effects of a Basel III shift in capital req in our model?
- ▶ Simulate 2008/2009 crisis and subsequent increase in cap req
- Pre 2008/2008 features: lax capital requirements & agents underestimate risk of run on shadow banking system (Moreira and Savov, 2017)
- Relative to bncmk calibration: pre-crisis has a lower capital requirement and higher S-bank bailout prob. and zero perceived prob. of S-bank run.
- Shock: run on S-banks and bad productivity shock
- Regulators increase cap req to 11% over 3 years and reduce S-bank bailout prob.

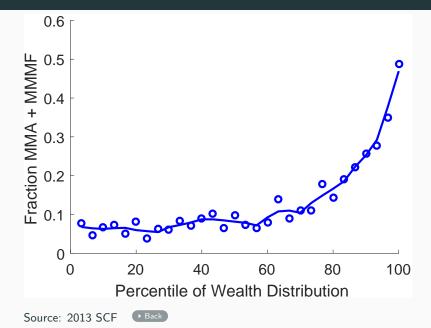
Recovery from the Financial Crisis



Conclusion

- Tractable quantitative GE model with two types of banks
- Increasing capital requirement on commercial banks
 - makes C-banks less, S-banks more profitable
 - leads to larger and riskier S-bank sector
 - less liquidity provision
 - no negative effects on production and investment in total
- Welfare trade-off: greater consumption (fewer bank failures) versus reduced liquidity provision
- Key Model Lessons
 - Quantitative force of either demand or competition effect depends on semi-well understood parameters governing
 - ► Liquidity preference of HH
 - Competition between S-bank & C-bank
 - Slight increase in S-bank risk does not undermine intended benefits of tighter capital regulation

Fraction of Liquid Wealth in MMA at Household Level



$$v^{S}(Z_{t}) = \max_{\substack{b_{t+1}^{S} \ge 0, k_{t+1}^{S} \ge 0}} k_{t+1}^{S} \left(q_{S}(b_{t+1}^{S}) b_{t+1}^{S} - p_{t} \right) - \frac{\phi_{K}}{2} \left(k_{t+1}^{S} - 1 \right)^{2} + k_{t+1}^{S} \mathsf{E}_{t} \left[M_{t,t+1} \prod_{t+1}^{S} \Omega^{S}(L_{t+1}^{S}) \right],$$

with

$$\Omega^{S}(L_{t}^{S}) = (1 - F_{\rho,t}^{S}) \left(\rho_{t}^{S,+} \left(1 - \ell_{t}^{S} \left(1 - x_{t}^{S} \right) \right) - L_{t}^{S} + (1 - \ell_{t}^{S}) \frac{v^{S}(Z_{t})}{\Pi_{t}^{S}} \right) - F_{\rho,t}^{S} \delta_{S}$$

Endogenous liquidation (fraction of assets)

$$\ell_t^S = \frac{\varrho_t^S B_t^S}{K_t^S \Pi_t^H}$$

• Probability of default $F_{\rho,t}^{S} = F_{\rho}^{S}(\hat{\rho}_{t}^{S})$ with threshold

36

C-bank default

Government bails out liabilities of failing C-banks

Recovers

$$r^{C}(L_{t}^{C}) = (1 - \xi^{C}) \frac{\rho_{t}^{C,-}}{L_{t}^{C}}$$

per bond issued by C-banks

C-bank default

Government bails out liabilities of failing C-banks

Recovers

$$r^{C}(L_{t}^{C}) = (1 - \xi^{C}) \frac{\rho_{t}^{C,-}}{L_{t}^{C}}$$

per bond issued by C-banks

- S-banks default
 - Benchmark: government does not bailout failing S-banks bails out liabilities of failing S-bank with probability π_B
 - Recovery value per bond

$$r^{S}(L_{t}^{S}) = (1 - \xi^{S})(1 - \ell_{t}^{S}(1 - x_{t}))\frac{\rho_{t}^{S, -}}{L_{t}^{S}}$$

C-bank default

Government bails out liabilities of failing C-banks

Recovers

$$r^{C}(L_{t}^{C}) = (1 - \xi^{C}) \frac{\rho_{t}^{C,-}}{L_{t}^{C}}$$

per bond issued by C-banks

- S-banks default
 - Benchmark: government does not bailout failing S-banks bails out liabilities of failing S-bank with probability π_B
 - Recovery value per bond

$$r^{S}(L_{t}^{S}) = (1 - \xi^{S})(1 - \ell_{t}^{S}(1 - x_{t}))\frac{\rho_{t}^{S, -}}{L_{t}^{S}}$$

Required taxes in addition to deposit insurance revenue

37